If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-q^2+200q-100=0
We add all the numbers together, and all the variables
-1q^2+200q-100=0
a = -1; b = 200; c = -100;
Δ = b2-4ac
Δ = 2002-4·(-1)·(-100)
Δ = 39600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39600}=\sqrt{3600*11}=\sqrt{3600}*\sqrt{11}=60\sqrt{11}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-60\sqrt{11}}{2*-1}=\frac{-200-60\sqrt{11}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+60\sqrt{11}}{2*-1}=\frac{-200+60\sqrt{11}}{-2} $
| 3x5=25 | | 7/3x+3/7x=180 | | (8.5+3.5)x=78 | | 10h-9=21 | | -50=-5(k-72) | | 28(z-1)=40z | | -19=g+55 | | 6–4x=3–2x | | (8x-10)+(15x+6)=180 | | 12y=y−33 | | g^2+6g–16=0 | | g2+6g–16=0 | | 8–5n+15=3n–17 | | B^3+8b-92=0 | | 9x+4=-(7x+8) | | 30=10(y−88) | | 13+6w=91 | | 6x+22=3x-41 | | x^2+9x÷13=4 | | 7(j+6)=98 | | 4y+14=-6y-56 | | y+44/7=10 | | -10x-5+4x=-4x+7 | | b+6=37 | | 3p-9=9p+9 | | -7x-10=8-9x | | w/2+9=12 | | 9c+9+2-8c+6c-5c-9=0 | | 52x=34x+92 | | -1/2(3+f)=7/4 | | (-6)+3(4)+(-5)x6=0 | | -1/2(3+f)=13/4 |